Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Although global magnetohydrodynamic (MHD) models have increased in sophistication and are now at the forefront of modeling Space Weather, there is still no clear understanding of how well these models replicate the observed ionospheric current systems. Without a full understanding and treatment of the ionospheric current systems, global models will have significant shortcomings that will limit their use. In this study we focus on reproducing observed seasonal interhemispheric asymmetry in ionospheric currents using the Space Weather Modeling Framework (SWMF). We find that SWMF does reproduce the linear relationship between the electrojets and the FACs, despite the underestimation of the currents’ magnitudes. Quantitatively, we find that at best SWMF is only capturing approximately 60% of the observed current. We also investigate how varying F10.7 effects the ionospheric potential and currents during the summer and winter. We find that simulations ran with higher F10.7 result in lower ionospheric potentials. Additionally, we find that the models do not always replicate the expected behavior of the currents with varying F10.7. This work points to a needed improvement in ionospheric conductance models.more » « less
-
null (Ed.)MHD-based global space weather models have mostly been developed and maintained at academic institutions. While the ``free spirit'' approach of academia enables the rapid emergence and testing of new ideas and methods, the lack of long-term stability and support makes this arrangement very challenging. This paper describes a successful example of a university-based group, the Center of Space Environment Modeling (CSEM) at the University of Michigan that developed and maintained the Space Weather Modeling Framework (SWMF) and its core element, the BATS-R-US extended MHD code. It took a quarter of a century to develop this capability and reach its present level of maturity that makes it suitable for research use by the space physics community through the Community Coordinated Modeling Center (CCMC) as well as operational use by the NOAA Space Weather Prediction Center (SWPC).more » « less
-
Abstract The escape of heavy ions from the Earth atmosphere is a consequence of energization and transport mechanisms, including photoionization, electron precipitation, ion‐electron‐neutral chemistry, and collisions. Numerous studies considered the outflow of O+ions only, but ignored the observational record of outflowing N+. In spite of 12% mass difference, N+and O+ions have different ionization potentials, ionospheric chemistry, and scale heights. We expanded the Polar Wind Outflow Model (PWOM) to include N+and key molecular ions in the polar wind. We refer to this model expansion as the Seven Ion Polar Wind Outflow Model (7iPWOM), which involves expanded schemes for suprathermal electron production and ion‐electron‐neutral chemistry and collisions. Numerical experiments, designed to probe the influence of season, as well as that of solar conditions, suggest that N+is a significant ion species in the polar ionosphere and its presence largely improves the polar wind solution, as compared to observations.more » « less
-
Abstract An intriguing aspect of the famous September 2, 1859 geomagnetic disturbance (or “Carrington” event) is the horizontal magnetic (BH) data set measured in Colaba, India (magnetic latitude approximately 20°N). The field exhibits a sharp decrease of over 1,600 nT and a quick recovery of about 1,300 nT, all within a few hours during the daytime. The mechanism behind this has previously been attributed to magnetospheric processes, ionospheric processes or a combination of both. In this study, we outline our efforts to replicate this low‐latitude magnetic field using the Space Weather Modeling Framework. By simulating an extremely high pressure solar wind scenario, we can emulate the low‐latitude surface magnetic signal at Colaba. In our simulation, magnetospheric currents adjacent to the near‐Earth magnetopause and strong Region 1 field‐aligned currents are the main contributors to the large ColabaBH. The rapid recovery ofBHin our simulated scenario is due to the retreat of these magnetospheric currents as the magnetosphere expands, as opposed to ring current dynamics. In addition, we find that the scenario that best emulated the surface magnetic field observations during the Carrington event had a minimum calculated Dst value between −431 and −1,191 nT, indicating that Dst may not be a suitable estimate of storm intensity for this kind of event.more » « less
An official website of the United States government
